
A new way to build microservices

Luram Archanjo

Who am I?

● Software Engineer at Sensedia

● MBA in java projects

● Java and microservice enthusiastic

Agenda

● Microservices

● Java & Frameworks

● Ahead of Time (AOT) Compilation

● GraalVM

● Micronaut

● Questions

Moving to Microservices

Feature A

Feature B

Feature C

Monolith

Microservice Microservice

Microservices

Microservice

Scalability

Feature A

Monolith Scalability

Microservice Microservice

Microservices Scalability

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Feature B Feature C

Feature A Feature B Feature C

Feature A Feature B Feature C

Our resources are finite!

How to use less resources
using Java language?

Our frameworks are design to
low memory footprint?

No, because we’ve tried to
adapt existing legacy

technologies for
Microservices

What do Spring and Jakarta EE undertaking? What are the results about it?

Spring is an amazing technical achievement and does so many things, but does them at Runtime.

● Reads the byte code of every bean it finds.
● Synthesizes new annotations for each annotation on each bean method, constructor, field etc.

to support Annotation metadata.
● Builds Reflective Metadata for each bean for every method, constructor, field etc.

The rise of Java
Microframeworks

Microframeworks

A microframework is a term used to refer to minimalistic web application frameworks:

● Without authentication and authorization
● Without database abstraction via an object-relational mapping.
● Without input validation and input sanitation.

Less modules, functions and
dependencies are not

enough!

Ahead of Time (AOT) Compilation

Ahead-of-time compilation (AOT compilation) is the act of compiling a higher-level programming
language, or an intermediate representation such as Java bytecode, into a native machine code so
that the resulting binary file can execute natively.

Web Android
Java

Google Dagger 2

?

uses Ahead of Time (AOT)
Compilation

What are the results of using
Ahead of Time (AOT)

Compilation?

The results of using Ahead of Time (AOT) Compilation

Data from Micronaut website:

● Startup time around a second.

● All Dependency Injection, AOP and Proxy generation happens
at compile time.

● Can be run with as little as 10mb Max Heap.

I don't believe, show me!

Is it possible to improve
more?

Yes, with

GraalVM

GraalVM is an universal virtual machine:

● Runs Java, Scala, Kotlin etc.

● Native image compiled with ahead-of-time improves the startup time and reduce the memory
footprint of JVM-based applications.

GraalVM works well when:

● Little or no runtime reflection is used.
○ Use third party libraries selectively.

● Limited or no dynamic classloading.

Demo

+

AOT Summary

Spring + JVM Micronaut + JVM Micronaut + GraalVM

Startup ≃ 0.8s

Memory ≃ 10mb

Startup ≃ 6s

Memory ≃ 15mb

Startup ≃ 0.4s

Memory ≃ 5mb

What else does Micronaut
do?

Blocking or Non-Blocking HTTP server built on Netty

With a smooth learning curve, Micronaut HTTP server makes it as easy as possible to expose APIs
that can be consumed by HTTP clients.

Blocking
@Controller("/hello")
public class HelloController {

 @Get
 public String hello() {
 return "Hello Micronaut";
 }

}

Non-Blocking (RxJava + Netty)

@Controller("/hello")
public class HelloController {

 @Get
 public Single<String> hello() {
 return Single.just("Hello Micronaut");
 }

}

Dependency Injection and Inversion of Control (IoC)

This is a similar approach taken by Spring and Google Dagger, but without reflection and proxies.
All the injections are done in compile time.

@Singleton
public class HelloService {

 public String hello() {
 return "Hello Micronaut";
 }

}

@Controller("/hello")
public class HelloController {

@Inject
private HelloService helloService;

 @Get
 public String hello() {
 return helloService.hello();
 }

}

Cloud Native Features

Distributed Tracing

When operating Microservices in production it can be challenging to troubleshoot interactions
between Microservices in a distributed architecture. Micronaut features integration with both Zipkin
and Jaeger (via the Open Tracing API).

@Controller("/hello")
public class HelloController {

@Inject
private HelloService helloService;

@Get("/{name}")
@NewSpan("hello")
 public String hello(@SpanTag String name) {
 return helloService.hello();
 }

}

Serverless Functions

Serverless architectures where as a developer you deploy functions that are fully managed by the
Cloud environment and are executed in ephemeral processes require a unique approach.

@FunctionBean("hello-function")
public class HelloFunction implements Supplier<String> {

 @Override
 public String hello() {
 return "Hello world";
 }

}

@FunctionClient
public interface HelloFunctionClient {

String hello();

}

Summary

2º Place

1º Place

3º PlaceAhead of Time (AOT)
Compilation

● Low memory
footprint

● Fast Startup

● IoC

● Productivity with
annotations

● Blocking or
Non-Blocking
HTTP server built
on Netty

Cloud Native Features

● Service Discovery

● Distributed
Tracing

● Serveless

● Distributed
Configuration

Thanks a million!
Questions?

/larchanjo

/luram-archanjo

